ORIGINAL ARTICLE

Franco M. Muggia · John A. Blessing Howard D. Homesley · Joel Sorosky

Tomudex (ZD1694, NSC 639186) in platinum-pretreated recurrent epithelial ovarian cancer: a phase II study by the Gynecologic Oncology Group

Received: 22 May 1997 / Accepted: 8 October 1997

Abstract *Purpose*: Tomudex is a second-generation folate analogue that when polyglutamated is a potent inhibitor of thymidylate synthase (TS). *Methods*: Based on indications of antitumor activity in phase I trials, the Gynecologic Oncology Group initiated a phase II study of Tomudex 3 mg/m² intravenously every 3 weeks in patients with epithelial ovarian cancer, who had been pretreated with platinum drugs, and had subsequently recurred more than 6 months following such treatment. *Results*: Of 30 patients entered into the trial, 2 were

This study was supported by National Cancer Institute grants of the Gynecologic Oncology Group Administrative Office (CA 27469) and the Gynecologic Oncology Group Statistical Office (CA 37517).

The following Gynecologic Oncology Group institutions participated in this study: University of Alabama at Birmingham, Temple University Health Science Center Hospital, University of Rochester Medical Center, Walter Reed Army Medical Center, Hospital of the University of Pennsylvania, Georgetown University Hospital, University of Iowa Hospitals and Clinics, Bowman Gray School of Medicine of Wake Forest University, University of California Medical Center at Irvine, Illinois Cancer Council, Cleveland Clinic Foundation, Pennsylvania Hospital, Columbus Cancer Council, Women's Cancer Center, and University of Oklahoma Health Science Center.

F.M. Muggia

Department of Medicine and Medical Oncology, Kaplan Cancer Center, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA Tel. +1-212-263-6484; Fax +1-212-263-8210

J.A. Blessing

Gynecologic Oncology Group, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

H.D. Homesley Bowman Gray School of Medicine, Carolina Gynecologic Oncology, Winston-Salem, NC 27103, USA

J. Sorosky Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA pathologically ineligible, leaving 28 fully evaluable. In this patient population, Tomudex was generally well tolerated, but only three objective (partial) responses were documented. *Conclusions*: With the level of activity seen, the drug was not considered for further clinical development in ovarian cancer by the Gynecologic Oncology Group. However, it may be worthwhile to explore whether quantitation of TS could lead to selection of patients more likely to respond to this TS inhibitor.

Key words Thymidylate synthase · Antifolates · MOv18 antibody · Cisplatin-sensitive ovarian cancer

Introduction

Following development and initial clinical study of CB3717, a quinazoline inhibitor of thymidylate synthase (TS), interest was generated in synthesizing a derivative retaining the activity against adenocarcinomas but avoiding unpredictable hepatic and renal toxicities presumably related to insolubility [2, 7, 9]. Tomudex (ICI D1694, ZD1694, NSC 639186) is such a second-generation folate analogue that was selected for clinical study as a selective inhibitor of TS, a key enzyme in the DNA synthetic pathway [5, 8–10]. This inhibition takes place via Tomudex polyglutamates that are formed by the action of folypolyglutamate synthetase (FPGS) [5]. Moreover, these polyglutamates have prolonged intracellular retention leading to potency, and probably account for selectivity against certain cancers. In preclinical studies, Tomudex has been shown to be cytotoxic in a number of tumor cell lines, and to show superior activity against human tumor xenografts compared with 5-fluorouracil (5FU) and methotrexate [17]. In the initial clinical studies, activity against colorectal cancer was noted, and this led to phase III studies comparing Tomudex with 5FU and leucovorin [15]. Some activity has been noted against a number of other tumor types, including ovarian cancer [6, 15]. This stimulated the Gynecologic Oncology Group (GOG) to perform a phase II study in patients with relapsed ovarian cancer.

Materials and methods

A cohort of patients who were still potentially sensitive to platinum compounds (i.e. they relapsed 6 months or longer after their initial induction platinum-based treatment) were selected for entry into GOG protocol #146-B. Treatment with paclitaxel in a separate regimen, if not given earlier, was also allowed prior to entry. At least 3 weeks had to elapse from cessation of other treatment to study entry. A GOG performance status of 3 or better was required. All patients were to have normal bone marrow function (white blood cell count > 3000/µl, platelets > 100 000/µl, granulocytes > 1500/μl), renal function (creatinine < 2.0 mg/dl) and hepatic function (bilirubin, AST, and alkaline phosphatase less than twice the institutional normal). Following reports of adverse drug events associated with renal dysfunction in other trials of Tomudex, a normal serum creatinine at entry and at redosing was required thereafter. Patients were specifically warned not to ingest any folate-containing vitamin supplements during the period of study. Written signed informed consent approved by the Institutional Review Boards was required prior to registration.

Patients were treated with Tomudex at an initial dose of 3 mg/m² to be repeated every 3 weeks in the absence of clinical progression. The drug was administered as a 15-min infusion at a various concentration in the range 0.002 to 0.2 mg/ml. Prior to every course, patients underwent a pelvic examination. Radiologic scans of the abdomen and pelvis were required every 8 weeks if disease was only measurable by such means. All patients had measurable disease. Standard GOG response criteria were used [1]. Patients showing responses or stable disease could be continued indefinitely at the investigator's discretion as long as no severe side effects were apparent. Hematologic parameters were followed weekly, serum chemistries every 3 weeks, and objective disease assessments including CA-125 every 6 weeks. Dose modifications for hematologic and/or gastrointestinal toxicities were prescribed as shown in Table 1. Dose delays were also prescribed if these or other toxicities had not resolved by day 21 of the cycle. Liver enzymes were not required to return to normal, but if they were twice normal, they had to show improvement by the following week prior to redosing.

Results

The study began in April 1994 and was closed to patient accrual in May 1995 after 30 eligible patients had been entered. Two patients were pathologically ineligible; one did not have an ovarian primary and one had insufficient pathologic documentation; 28 patients were therefore fully evaluable and received 122 cycles. The median

Table 1 Dose modifications for gastrointestinal and/or hematologic toxicity (– no further treatment)

Hematologic toxicity (grade)	Dose Gastrointestinal toxicity (grade)				
0	100%	100%	75%	50%	_
1	100%	100%	75%	50%	_
2	100%	75%	50%	-	_
3	75%	50%	50%	-	_
4	50%	50%	0%	_	_

Table 2 Patient characteristics

Characteristic	No. of cases		
Age (years)			
Median	60.5		
Range	44–79		
GOG performance status			
0	16		
1	7		
2	5		
Tumor grade			
1	1		
2	10		
3	17		
Site of disease			
Pelvic	13		
Extrapelvic	15		
Prior radiotherapy	2		
Prior chemotherapy			
One regimen	2		
Two regimens	26 ^a		

^a 24 patients received previous paclitaxel

number of cycles given was 3.5 (range 1–23). Patient characteristics are displayed in Table 2. Three patients (10.7%, 95% confidence interval 2.3–28.2) achieved partial responses (PR) that lasted 5.8, 8.1 and 27.0+ months. At the time of first assessment, 14 patients had stable disease, whereas 11 had increasing disease. Of the 14 patients with stable disease and 2 with PR, 5 remained on study for the longest periods having received from 6 to 23 cycles of Tomudex. The median survival for all patients was 20.1+ (4.5–29.2) months.

Severe toxicities, as expected, were primarily hematologic with three grade 4 and two grade 3 neutropenia; two patients also manifested grade 3 thrombocytopenia. These led to dose modifications; hematopoietic growth factors were not used. One patient each experienced grade 3 and 4 nausea and vomiting. Gastrointestinal toxicity was otherwise rare with grade 2 and 1 diarrhea being recorded. No stomatitis was noted. Other grade 3 toxicities included fatigue in three patients; anemia, skin rash, and AST (SGOT) elevation in one each. Two patients experienced fever, two additional patients had skin rashes and minor degrees of anemia or transaminase elevations were seen in six and five, respectively. One patient declined to receive the drug after her initial dose because of skin rash and weakness. Four patients had dose delays as a result of toxicity, and three patients required dose modifications. At the other extreme, another patient received 23 cycles with excellent tolerance.

Discussion

The response rates noted in this trial and in another trial in a similar group of patients with ovarian cancer have indicated only modest activity of Tomudex in this disease [4, 6]. This degree of activity is comparable to that of 5FU and leucovorin in a similar population of pretreated patients [12–14]. Although disappointing, the antitumor effects observed do support efforts at identifying retrospectively some pharmacodynamic correlates of response to justify future trials or drug development of similar compounds against this cancer.

Interest in Tomudex and related compounds continues because of the possibility that one may identify patients likely to benefit by studying TS expression in ovarian tumors. In a number of studies, a low level of TS has predicted responsiveness to 5FU and to other TS inhibitors [11]. In addition, as a folate antimetabolite, the possibility of enhancing its effects through selective modulation may be raised. Tumors that have high levels of FPGS and are able to retain the Tomudex polyglutamates may be more susceptible to inhibition of nucleoside uptake. Presumably, in such tumors the only way for cells to survive the TS inhibition is through thymidine uptake. Yet another feature that may impart some selectivity for antifolates in some ovarian cancers is the presence of the folate-binding protein identified by MOv18 and MOv19 monoclonal antibody reactivity at the cell surface [3]. Whether MOv18 immunostaining might predict for enhanced uptake of Tomudex and related antimetabolites, leading to greater cytotoxicity against tumors expressing this folate-binding protein, is currently unclear [16]. It is hoped that a study will be done of patients' tumors for their expression of TS and MOv18, with the aim of casting further light onto some of these issues.

References

- Blessing JA (1990) Design, analysis and interpretation of chemotherapy trials in gynecologic cancer. In: G. Deppe (ed) Chemotherapy of Gynecologic Cancer (2nd ed.). Alan R. Liss, New York, pp 63–97
- Calvert AH, Alison DL, Harland SJ, Robinson BA, Jackman AL, Jones TR, Newell DR, Siddik ZH, Wiltshaw E, McElwain TJ, Smith IE, Harrap KR (1986) A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor, Nl°-propargyl5,8-dideazafolic acid CB3717. J Clin Oncol 4: 1245
- Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi M, Zurawski VR (1991) Cloning of a tumor-associated antigen: MOV18 and MOV19 antibodies recognize a folate binding protein. Cancer Res 51: 6125
- Cunningham D, Zalcberg J, Smith L, Gore M, Pazdur R, Burris III H, Meropol NJ, Kennealey G, Seymour L (1996) "Tomudex" International Study Group. "Tomudex" (ZD1694)®: A novel thymidylate synthase inhibitor with clinical antitumour activity in the range of solid tumours. Ann Oncol 7: 179

- Gibson W, Bisset GMF, Marsham PR, Kelland LR, Judson IR, Jackman AL (1993) The measurement of polyglutamate metabolites of the thymidylate synthase inhibitor, ICI D 1694, in mouse and human cultured cells. Biochem Pharmacol 45: 863
- Gore ME, Earl HM, Cassidy J, Tattersall M, Mansi J, Seymour L, Azab M (1995) A phase II study of Tomudex in relapsed epithelial ovarian cancer. Ann Oncol 6: 724
- Jackman AL, Taylor GA, Calvert AH, Harrap KR (1984) Modulation of anti-metabolite effects: Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthase inhibitor CB3717. Biochem Pharmacol 33: 3269
- Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR (1991) ICI D1694: A quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo; a new agent for clinical study. Cancer Res 51: 5579
- Jodrell DI, Newell DR, Morgan SE, Clinton S, Bensted JPM, Hughes LR, Calvert AH (1991) The renal effects of N10propargyl-5,8-dideazafolic acid (CB3717) and a nonnephrotoxic analogue ICI D1694, in mice. Brit J Cancer 64: 833
- Jodrell DI, Newell DH, Gibson W, Hughes LR, Calvert AH (1991) The pharmacokinetics of the quinazoline antifolate ICI D1694 in mice and rats. Cancer Chemother Pharmacol 28: 331
- 11. Lenz HJ, Leichman CG, Danenberg KD, Danenberg PV, Groshen S, Cohen H, Laine L, Crookes P, Silberman H, Baranda J, Garcia Y, Li J, Leichman L (1996) Thymidylate synthase expression in adenocarcinoma of the stomach: A predictor for primary tumor response and overall survival. J Clin Oncol 14: 176
- Look KY, Blessing JA, Muss HB, DeGeest K (1992) 5-fluorouracil and low dose leucovorin in the treatment of recurrent epithelial ovarian carcinoma: A phase II trial of the Gynecologic Oncology Group. Am J Clin Oncol: CCT, 15: 494
- 13. Look KY, Muss HB, Blessing JA, Morris M (1995) A phase II trial of 5-fluorouracil and high dose leucovorin in recurrent epithelial ovarian carcinoma: A Gynecologic Oncology Group study. Am J Clin Oncol: CCT 18: 19
- 14. Morgan Jr. R, Speyer J, Doroshow J, Sorich J, Raschko J, Akman S, Hamasaki V, Leong L, Margolin K, Somlo G, Vasilev S, Ahn C, Beller U, Womack E (1993) Modulation of 5-fluorouracil (5-FU) with high dose folinic acid: Activity in ovarian cancer (OC) and correlation with CA-125 levels. Gynecol Oncol 12: 274 (abstr 882)
- 15. Seitz JF, Cunningham D, Rath U, Olver IN, VanCutsem E, Kerr D, Svensson C, Perez Manga G, Harper P, Zalcberg J, Lowery K, Azab M (1996) Final results and survival data of a large randomized trial of 'Tomudex' in advanced colorectal cancer (ACC) confirm comparable efficacy to 5-fluorouracil plus leucovorin (5FU+LV). Proc Am Soc Clin Oncol 15: 201 (abstr 446)
- 16. Sen S, Erba E, D'Incalci, M, Bottero F, Canevari S, Tomassetti A (1996) Role of membrane folate-binding protein in the cytotoxicity of 5,10-dideazatetrahydrofolic acid in human ovarian carcinoma cell lines in vitro. Br J Cancer 73: 525
- 17. Stephens TC, Valcaccia BE, Sheader ML, Hughes LR, Jackman A (1991) The thymidylate synthase (TS) inhibitor ICI D1694 is superior to CB3717, 5-fluorouracil (5-FU) and methotrexate (MTX) against a panel of human tumor xenografts. Proc Am Assoc Cancer Res. 32: 328